COMP 251: Data Structures and Algorithms Fall 2006

Tutorial on Modular Congruences
Lecturer/TA: Ethan Kim October 20th, 2006

In this tutorial, we study basic number theory including congruences modulo n.

1 Review of Basic Number Theory

First, we introduce the notation a | b (read “a divides b”), meaning that b = ka for some integer
k. If a does not divide b, we write a 1 b. An integer p > 1 whose only divisors are 1 and a itself,
we say p is prime. All other positive integers can be expressed as a product of prime numbers, and
they are called composite numbers. Two integers a and b are said to be relatively prime if their
only common divisor is 1.

2 Introduction to Congruences
Definition. Let a,b,m be integers with m > 0. If m | (a — b), we say that a is congruent to b
modulo m, and we write it as a = b (mod m). This notion can also be characterized as follows.

Theorem 1. Let a and b be integers. Then, a = b(mod m) if and only if there is an integer k such
that a = b+ km.

Proof is trivial. You can do this as an exercise..

Theorem 2. Congruence as Equivalence Relation. Let m be a positive integer. Then,
congruences modulo m satisfy the following properties:

1. Reflexive property: If a is an integer, then a = a (mod m)
2. Symmetric property: If a and b are integers such that a =b (mod m), then b =a (mod m).
3. Transitive property: If a,b, and ¢ are integers with a =b (mod m) and b = ¢ (mod m), then
a=c (modm).
Proof. 1. We see that a = a (mod m), since m | (a — a) = 0.

2. If a = b (mod m), then m | (a —b). Hence, there is an integer k£ with km = a —b. This shows
that (—k)m = b — a, so that m | (b — a). Consequently, b = a (mod m).

3. If a =b (mod m) and b = ¢ (mod m), then m | (a —b) and m | (b — ¢). Hence, there are
integers k and [ such that km = a — b and Im = b — ¢. Therefore, a —c=(a—b) + (b—c¢) =
km +Ilm = (k 4+ l)m. It follows that m | (a — ¢) and a = ¢ (mod m).
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Theorem 2 suggests that the set of integers is partitioned into m different sets called congruence
classes modulo m, each containing integers that are mutually congruent modulo m.

Now, we will do arithmetic with congruences.

Theorem 3. If a,b,c, and m are integers with m > 0 such that a = b (mod m), then:

1. a+c=b+c (modm)
2. a—c=b—c (modm)
3. ac = bc (mod m)
Proof. 1. From a = b (mod m), we have m | (a — b). Since a —b = (a 4+ ¢) — (b + ¢), we have
m | ((a+¢)—(b+¢)).
2. Similarly, a — b= (a — ¢) — (b — ¢), and hence we have m | ((a — ¢) — (b — ¢)).

3. Note that ac — bc = ¢(a —b). Since m | (a —b), it follows that m | ¢(a —b), and hence ac = be
(mod m).
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Example Since 19 =3 (mod 8),26 =194+7=3+7=10 (mod 8),15=19—-4=3—-4=—1
(mod 8), and 38 =19-2=3-2 =6 (mod 8).

However, it should be noted that the congruence doesn’t necessarily hold for divisions.

Example We have 14 =7-2=4-2 =28 (mod 6). But we cannot cancel the common factor of 2
since 7 # 4 (mod 6).

The congruence does hold for division, however, when the divisor is coprime with the modulo m.

Theorem 1. If a,b,c and m are integers such that m > 0, and c¢,m are relatively prime, and
ac = bc (mod m), then a =b (mod m).

Proof.

ac = be(modm)

m|(ac — be) = c(a —b)

km = c(a —b)

Since GCD(m,c)=1,m | (a — b)

a = b(modm)
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You can even add/subtract/multiply two distinct but congruent numbers on both sides of the
congruence.



Theorem 4. If a,b,c,d, and m are integers such that m >0, a =b (mod m), and ¢ = d (mod m),
then:

1. a+c=b+d (mod m),
2.a—c=b—d (modm),
3. ac=bd (mod m).

Try this proof on your own.

As a result, we can do mod at any time during computation (and at the end) and still obtain the
same result. This is useful if you want to keep the intermediate results of a calculation small.

Example Suppose that you wish to design an algorithm that computes (a-b) mod m, where a
and b are as large as 32-bit integers, and m is small. Computing the ab mod m directly may cause
an overflow (as the product of two 32-bit integers can be as large as 64-bit). To resolve this, we
can do as follows (a = 239, b = 231 m = 12):

ab mod m =[(a mod m)(b mod m)] modm
[(2%° mod 12)(23' mod 12)] mod 12
[4-8 mod 12
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3 Modular Linear Equations

Suppose you want to solve the following equation, given the value a, b, m:

a-xr=b modm

(e.g. If we start at 12:00 and move the hour hand 5 hours each time, how many times does it take
to reach 1:007)

This linear equation sometimes does not have solutions. For example, when a = 2,b = 1,m = 4,
no such value for z exists.

In particular, when b = 1, the solution to the equation is called multiplicative inverse of a, and we

denote it as a~ 1.

71:

a-a 1 modm

As in the example above, not all values of a and m yield a multiplicative inverse. However, we can
say the following.

Theorem 5 (Corollary 31.26 on page 872) . For any m > 1, if ged(a,m) = 1, then the
equation ax =1 (mod m) has a unique solution, modulo m. Otherwise it has no solution.

Therefore, if we let m be some prime number p, all integers in Z, \ {0} has a unique multiplicative
inverse.



Example Consider Z5. Then the following holds for each element of Zs \ {0}:
1-1=1(mod5) — 17! mod 5=1
3—1( d5) - 271 mod5=3
-2 =1(mod5) — 37! mod 5 =2
4-4=1(mod5) — 41 mod 5 =14

4 Application to Universal Hash Functions

In previous lecture(s), we proved H,,,, is universal. During the proof, couple of arguments were
possible using these modular arithmetic. Let’s look at those arguments again.

Argument 1 First, we let p be a large prime. Since we picked the values a, b for hgp such that
a € Z, and b € Z, both of these values are smaller than p. Now, consider two distinct keys k and
[ from Z,. For a given hash function h,; we let

r = (ak+b) modp
s=(al+b) mod p
Then we argued that r # s. This can be achieved as follows. First, by definition, we have
r=ak+b( mod p)
s=al+b( mod p)
Subtracting the first congruence by the second congruence, we get
r—s=a(k—10)( mod p)

Note that a and k — [ are both non-zero. The product a(k — ) cannot be zero modulo p, because
p is a prime number. Hence r — s is non-zero, yielding r # s.

Argument 2 Later in the proof, we solved the above equations for ¢ and b given r and s. We
will do this step by step. First of all, since k — [ < p and p is a prime, we know that (k — [)~!
mod p exists. Hence,

r—s=a(k—1) (modp)
— (r—s)k—=D"'=ak-0-(k—1)"!=a (modp)
= a=(r—s)((k—=0)""' modp)) modp

For b, we can derive similarly:

r = (ak + b)modp

r = ak 4+ b (modp)

r — b= ak (modp)
—b=ak —r (modp)
b=r — ak (modp)
b= (r—ak) modp
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