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1 Abstract Data Types (ADTs)

Definition 1. An Abstract Data Type(ADT) is a set of data values and associated operations that
are precisely specified independent of any particular implementation.

Examples:

1. Stack: push, pop

2. Queue: enqueue, dequeue

3. Priority Queue: insert, find max, delete, . . .

4. Dictionary: stores (key, value) pairs, and supports insert, find, delete

We use various data structures to implement these ADTs. For example..

• Binary Search Trees

• Arrays

• Linked Lists

• Hash Tables

2 Hash Tables

What are hash tables? Suppose we want to implement an ADT that supports insert, delete, and
search. In particular, suppose each data contains two entries: key and value. Note that the key
serves as a way to identify the entry, whereas the value can be any combination of information.
For example:

• student information: key is student ID, where the value can be the student’s name, address,
etc.

• credit card information: key is the credit card number, and the value can be the client’s
information..

• car information: key is the license plate number, and the value can be its maker, model, year,
. . .
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Figure 1: a hash table; collisions are not handled

Now, consider the credit card information. VISA card numbers are 16 digits long, so there are 1016

possible keys.

1. If we build an array capable of holding 1016 accounts, it would require Petabytes of RAM
even if each entry is only one byte. → extremly inefficient!

2. If we build a linked list to hold only the existing accounts, the space required won’t be an
issue, but now it takes O(n) time to search.

Hash tables let us implement these operations in O(1) running time on average.

2.1 Basic Concepts

Let U be the universe of possible key values. (As for the VISA card example, there are 1016 key
values in this universe.) Let T [0 . . .m − 1] be the hash table. We define the hash function as
h : U → {0, 1, . . . ,m− 1}.

What the hash function does is basically mapping the key to some index of the hash table. Ideally,
m is much smaller than |U |, so that we do not waste any space. But, as we have more entries in
the hash table, problems may occur. See Figure 1.

If m is smaller than the number of keys stored in the hash table, there is a collision. The two main
challenges when designing a hash function are:

1. Minimize the number of collisions

2. How to handle the collisions
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Figure 2: a hash table with separate chaining

2.2 Hash table with separate chaining method

One way to resolve collisions is to create a linked list for each entry in the hash table. See Figure
2. We may implement this as follows:

1. CHAINED-HASH-INSERT(T, x)
insert x at the head of the list T[h(key[x])]

2. CHAINED-HASH-SEARCH(T, k)
search for element with key k in T[h(k)]

3. CHAINED-HASH-DELETE(T, x)
delete x from the list T[h(key[x])]

Observe that both the INSERT and DELETE operations can be done in O(1) time, worst-case.
For SEARCH operation, it takes O(n) time. Why? In the worst-case scenario, the hash function
may decide to put all the entries into a single cell in the hash table, in which case we simply have
all the elements in a linked list.

But, we can say a little more..

2.3 Analysis of hashing with chaining

We want to analyze the expected running time for CHAINED-HASH-SEARCH operation. In order
to make our analysis easy, we assume that our hash function perfectly distributes the keys into the
hash table.

Given a hash table T with m slots that stores n elements, we define the load factor α as n
m . This is

the average number of elements stored in a single slot in T . For now, assume that every element is
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equaly likely to hash into any of the m slots, independently of other element’s positions in the hash
table. This assumption is called simple uniform hashing. This allows us to figure out the average
length of the linked lists attached to T .

For j ∈ {0, . . . ,m − 1}, let nj = length of list T [j]. Thus, we have n =
∑m−1

j=0 nj . If we take the
expected value of both sides:

n = E[n] = E[
m−1∑
j=0

nj ]

=
m−1∑
j=0

E[nj ]

= mE[nj ] by SUH

So we have that E[nj ] = n
m = α.

Now that we know the expected length of the chains, we can analyze the time it takes to find an
arbitrary element x in the hash table T . There are two scenarios: 1) we find x in T . 2) we don’t
find x in T . We look at each case separately.

Unsuccessful Search First, we need to hash the key into the hash table, i.e., compute h(key[x]).
This can be done (usually) in O(1) time. Then, we need to run down the linked list looking for
that key. The expected length of the list is α. So the overall search takes O(1 + α) time.

Successful Search Again, we need to hash the key into the hash table, so this takes O(1) time.
Then, we look for the key in the corresponding chain in the hash table. On average we look at
halfway through a list, i.e., α

2 . This gives the overall search takes O(1 + α) time.

We could do this a little more formally. The time it takes for a successful search is the number of
elements before x in the list plus 1. Notice, however, the elements before x are all inserted after
x. (Recall the implementation of CHAINED-HASH-INSERT.) Let xi denote ith element inserted
into the table, and let ki denote the key for xi. Consider the indicator random variable Xi,j =
I{h(ki) = h(kj)} for collisions between xi and xj . By SUH, we have that Pr{h(ki) = h(kj)} = 1

m .
Thus, we have E[Xi,j ] = 1

m . Now, we can compute the number of elements searched as below:

E[
1
n

n∑
i=1

(1 +
n∑

j=i+1

Xi,j)] = 1 +
1
n

n∑
i=1

n∑
j=i+1

E[Xi,j ]

= 1 +
1
n

n∑
i=1

n∑
j=i+1

1
m

= 1 +
n

m
= 1 + α

So we can do the searches in O(1 + α) time. Even better, if the size of hash table is proportional
to the number of elements stored, α = n

m = O(m)
m = O(1). Therefore, the expected running time

for CHAINED-HASH-SEARCH is O(1).
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