
COMP 251: Data Structures and Algorithms

Solution for Assignment #1

1 Slippery induction

The claim doesn’t hold for n = 3. There are two places where the reasoning is false.

1. “The claim is obviously true for one line. . . ”. If you have one line in the plane, there is no

point in common. Thus, the induction fails for the base case.

2. “But since any lines sharing two points in common are the same line. . . ”, “the common point
of the first n lines and the last n lines must be the same common point.” Notice that the
first n lines is not the same set of lines as the last n lines, and hence the argument is invalid.

2 Converting to base b

Note: When writing down an algorithm, it is a good practice to state what the inputs are, and
what the desired output is.

ConvertBase(m, b)

input : integer m, integer b as the base

output : array A of integers such that b =
∑blogb mc+1

j=1 A[j] · bj−1

1 i← 1
2 n← m
3 while n ≥ 0
4 do A[i]← n mod b
5 n← n/b
6 i← i + 1
7 return A

Proof. Loop invariant for this algorithm would be as follows:

m = n · bi−1 +

i−1∑

j=1

A[j] · bj−1 (1)

1. Initialization Before we start the loop, we have i = 1 and n = m. Thus, the loop invariant
holds.
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2. Maintenance Suppose the loop invariant held before the previous iteration. During the last
iteration, however, we do: A[i] = n mod b and n = b n

b c. So, we have

m = n · bi−1 +

i−1∑

j=1

A[j] · bj−1

= (bn
b
c · b + n mod b) · bi−1 +

i−1∑

j=1

A[j] · bj−1

= bn
b
c · bi +

i∑

j=1

A[j] · bj−1

, which is what we wanted.

3. Termination Upon termination of the loop, we have n = 0. Thus, we have that

m = n · bi−1 +

i−1∑

j=1

A[j] · bj−1

=

i−1∑

j=1

A[j] · bj−1

But what is the value of i after the termination? We are dividing n by b until n runs to zero,
and we increment the value of i by 1 at each iteration, so i = blogb mc+ 2. Substituting this
value into the above summation gives exactly the desired output.

*Note: For this problem, many people missed full marks at the Termination phase. Loop invariant
is there to show the correctness of the algorithm. The first two phases of the proof(Initializiation
and Maintenance) resemble a proof by induction to show that the loop invariant holds. In the
Termination phase, however, you should show what the loop invariant implies in terms of the
correctness of the algorithm. Here, we wish to compute the base b representation of m. Notice that
the number of digits in base b is blogb mc + 1. Since the loop invariant tells us that the array A
contains exactly the value we wanted, we know our algorithm is correct.

3 Correctness of Horner’s rule

a)

Assuming Real RAM model of computation(ie. binary operations between two real numbers takes
constant time), the algorithm given runs in O(n) time.
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b)

NaivePolynomial(A, x)

input : array A of integers, integer x
output : integer y

1 y ← 0
2 for i← 0 to n
3 do t← 1
4 for j ← 1 to i
5 do t← t · x
6 y ← y + A[i] · t
7 return y

The inner for loop runs for i iterations, where i goes from 0 to n. Thus, the total number of
iterations is

∑n
i=0 i = O(n2), and hence the running time of NaivePolynomial is O(n2).

c)

1. Initialization Before the loop begins, we have i = n and y = 0:

n−(i+1)∑

k=0

ak+i+1x
k = 0 = y

2. Maintenance Assuming that the invariant holds at the start of an iteration, we show that it

still holds before the next iteration. So, we assume that y =
∑n−(i+1)

k=0 ak+i+1x
k. Then,

y = ai + x

n−(i+1)∑

k=0

ak+i+1x
k

= ai + x(ai+1x
0 + ai+2x

1 + · · ·+ anxn−(i+1))

= aix
0 + ai+1x

1 + · · · + anxn−i

=
n−i∑

k=0

ak+ix
k

3. Termination The loop terminates with the value i = −1. Substituting this value into the
invariant, we have that y =

∑n
k=0 akx

k.

d)

As the input, the algorithm takes in the coefficients of the polynomial in array a, and the value of x.
Since the value of the polynomial is

∑n
k=0 akx

k, and the loop invariant dictates that the algorithm
evaluates such value, we know the algorithm is indeed correct.
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4 Computer Politics

a)

In this problem, note that the number of candidates is essentially unbounded. Many people made a
mistake by converting the data structure into an array that keeps the count of votes each candidate
obtained. The key idea was given in the question: IF there is a winner, THEN at least one of
her voters won’t be matched. So then the problem reduces to finding an unmatched voter. Note,
however, the converse of the statement isn’t true. (eg. Consider the votes [Sam, Matt, Holly].
Holly can’t be matched, but she is not the winner!) So the algorithm must first see if there is an
unmatched candidate, and check if she obtained more than half the votes.

FindWinner(A,n)

input : array A of candidates, n the size of array A
output : winner’s name if there is one, No otherwise

1 for i← 1 to n
2 do if Stack is empty or Stack.Top = A[i]
3 then Stack.Push(A[i])
4 else Stack.Pop
5 if Stack is empty
6 then return No
7 Winner← Stack.Top
8 Count← 0
9 for i← 1 to n

10 do if A[i] = Winner
11 then Count← Count + 1
12 if Count ≥ bn

2 c+ 1
13 then return Winner
14 else return No

Note: Here, I used a stack to keep track of the potential winner. This follows from the hint /
explanation I gave you after the class on Jan 17th. (“Put the votes into a bucket and maintain all
the unmatched votes as you go through... etc.”) The use of a stack isn’t crucial to the algorithm,
however, since I’m only storing the same candidate in the stack. Same algorithm can be imple-
mented without using the stack, by simply keeping track of the potential winner in a variable, and
also the number of unmatched votes.

b)

For the first loop, the loop invariant for the algorithm is as follows: “The stack contains all the
unmatched votes so far”. Let’s see if this invariant holds throughout the algorithm.

1. Initialization Before the loop begins, the stack is empty. Since at this point, we have not seen
any votes, and thus there is no unmatched vote.
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2. Maintenance Assume that the invariant held before ith iteration. During the ith iteration,
the algorithm checks if A[i] can be matched with the top of the stack. If they are the same,
A[i] is again pushed onto the stack, and if they are different(matched), the top of the stack is
popped. Thus, the stack correctly maintains all the unmatched votes we have seen thus far.

3. Termination Upon termination of the loop, the stack contains all the unmatched votes in the
array. Notice that the stack must contain votes for a single candidate, for otherwise a vote
for a different candidate could not have been stored in the first place. Therefore, the first for

loop finds the only potential winner.

After the first loop, the rest of the algorithm simply checks if the potential winner is truly the
winner. This is done trivially in the second for loop. The first for loop compares each element
in the array against the stack top, and the second for loop compares the potential winner to
each element in the array. The overall running time of FindWinner is clearly O(n), with 2n
comparisons in particular.

5 Recursion Trees

Expand the recursion tree, and it is easy to see that the sum of nodes at each level of the tree is
cn. The depth of the tree then depends on the value of α, as the depth of the both ends is log 1

α

n

and log 1
1−α

n. Thus, we make a guess that the running time T (n) = θ(n log n).

Let’s prove the upper bound here. For the base case, we have

T (
1

α
) ≤ c3

1

α
log

1

α

T (
1

1− α
) ≤ c3

1

1− α
log

1

1− α

for some constant c3 such that c3 ≥ αT (1/α)
log(1/α) , and c3 ≥ (1−α)T (1/(1−α))

log(1/(1−α)) .

For inductive step, assume, for some constant c1 and c2,

T (αn) ≤ c1(αn) log(αn)

T ((1− α)n) ≤ c2((1− α)n) log((1− α)n)

Then we show that T (n) ≤ c3n log n for some constant c3.

T (n) = T (αn) + T ((1− α)n) + cn

≤ c1αn log(αn) + c2n log((1− α)n)− c2αn log((1− α)n) + cn

= c1αn log α + c1αn log n + c2n log(1− α) + c2n log n− c2αn log(1− α)− c2αn log n + cn

= (c1α log α + c2 log(1− α)− c2α log(1− α) + c)n + (c1α + c2 − c2α)n log n

≤ c3n log n

for some constant c3 large enough, so that c1α + c2 − c2α ≤ c3, and c1α log α + c2 log(1 − α) −
c2α log(1− α) + c ≤ 0. The lower bound can be shown similarly, by induction.
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6 Some practice on recurrence relations

In this section, be careful when you are using the Master Theorem. There are gaps between the
three cases, and for the recurrences that do fall into one of the three cases, you need to explicitly
state the value of ε.(range is OK.)

a)

(By Master Theorem) a = 4, b = 2, nlogb a = n2, f(n) = n
n = O(n2−ε) for 0 < ε ≤ 1.
So, by case 1 of master theorem, T (n) = θ(n2).

b)

(By Master Theorem) a = 2, b = 2, nlogb a = n, f(n) = log n
log n = O(n1−ε) for 0 < ε < 1.
So, by case 1 of master theorem, T (n) = θ(n).

c)

(By Master Theorem) a = 5, b = 2, nlogb a = nlog25 = n2.32...

Because n log n < n1+x for some x > 0, we have that
(n log n)2 < n2+2x < n2.32−ε for 0 < ε < 0.32.
So, by case 1 of master theorem, T (n) = θ(nlog25).

d)

Expand the recursion tree for this recurrence. The depth of the tree is log n, and the sum of nodes
for each level is n

log n , n
log n−1 , n

log n−2 , . . . , n
log n−i . Thus, we have that

T (n) =

log n−1∑

i=0

n

log n− i

= n

log n∑

i=1

1

i

= nH(log n)

≈ n(log(log n) + γ + O(1/n))

= θ(n log log n)

(Recall the approximation of a harmonic series.)
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e)

First, we let n = 2m. Then we have T (2m) = 2T (2m/2) + m.
Let F (m) = T (2m). Then we have

F (m) = 2F (m/2) + m

Now, apply the Master theorem here.

a = 2, b = 2, mlogba = m, f(m) = m

Then, we have F (m) = θ(m log m). Substituting back, we get F (m) = T (2m) = θ(m log m), and
finally,

T (n) = θ(log n log log n)

f)

First, expand the recurrence to see a pattern.

T (n) = T (n− 1) + log n

= T (n− 2) + log(n− 1) + log n

= T (n− 3) + log(n− 2) + log(n− 1) + log n

...

= T (1) + log(2) + log(3) + · · · + log n

= log(2× 3× · · · × n)

= log(n!)

Now, we make a guess that T (n) = θ(n log n). For upper bound,

log n! = log(n× (n− 1)× (n− 2)× · · · × 1)

≤ log(n× n× · · · × n)

= log(nn) = n log n

Now, for the lower bound,

log(n!)2 = log(n× (n− 1)× (n− 2)× · · · × 2× 1×
1× 2 × 3 × · · · × (n− 1)× n)

= log(n× 2(n− 1)× 3(n− 2)× · · · × (n− 1)2 × n)

≥ log(n× n× · · · × n) = log(nn)

Since log(n!)2 ≥ log(nn), we have 2 log n! ≥ n log n, and finally log n! = Ω(n log n).
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g) T (n) =
√

nT (
√

n) + n

Let n = 2m. Then,
T (2m) = 2m/2T (2m/2) + 2m

Let F (m) = T (2m). Then,
F (m) = 2m/2F (m/2) + 2m

Using the substitution method, try expanding the recurrence:

F (m) = 2m/2(2m/4F (m/4) + 2m/2) + 2m

= 23m/4F (m/4) + 2 · 2m

= 27m/8F (m/8) + 3 · 2m

...

= 2
2i−1

2i
mF (

m

2i
) + i · 2m

...

= 2
2log2 m−1

2log2 m
×m

F (
m

2log2 m
) + log2 m · 2m

= 2m−1F (1) + 2m × log m

So we claim that F (m) = θ(2m log m). We prove it by induction.
First the upper bound: for the base case, we let m = 2, and then F (m) ≤ c · 22 log 2. For m = 3,
we have F (m) ≤ c · 23 log 3.

Assume that F (m) ≤ c · 2m log m for 2 ≤ m ≤ 2j − 1.
Now, for m = 2j, we have F (2j) = 2jF (j) + 22j . Since we know that F (j) ≤ c · 2j log j from
induction hypothesis, we have F (2j) ≤ c · 22j log j + 22j .
What we wish to find is that F (2j) ≤ c · 22j log(2j). Let’s find the value of c from this inequality.
We have that c · 22j log j + 22j ≤ c · 22j log 2 + c · 22j log j.(For otherwise, we are done). Cancelling
the common terms on both sides, we have 1 ≤ c log 2. So, by setting c ≥ 1, we have the upper
bound.

The lower bound proof can be done similarly using induction. Hence, we have F (m) = θ(2m log m).
Substituting back, we have that T (n) = θ(2log2 n log log2 n) = θ(n log log n).
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